سال انتشار: ۱۳۹۴

محل انتشار: بیستمین کنفرانس توزیع برق

تعداد صفحات: ۸

نویسنده(ها):

Zgaleh Nobahari – Great Tehran Electrical Distribution Co Tehran, Iran
Manouchehr Tabatabaei – Great Tehran Electrical Distribution Co Tehran, Iran

چکیده:

A hybrid Wind/Photovoltaic/hydrogen/fuel cell generation system is designed to supply power demand. The major components of the system i.e. wind turbine generators, photovoltaic arrays and DC/AC converter may be subjected to failure. Also, solar radiation, wind speed and load data are assumed to be entirely deterministic. The goal of this design is to use a novel multi-objective optimization algorithm to minimize the objective functions i.e. annualized cost of the system, loss of load expected and loss of energy expected. System costs involve investment, replacement and operation and maintenance costs. Prices are all empirical and components are commercially available. The simulation results for different cases reveal the impact of components outage on the reliability and cost of the system. So, they are directly depends on component’s reliabilities, i.e. outages lead to need for a larger and more expensive generation system to supply the load with the acceptable level of reliability. In addition, an approximate method for reliability evaluation of hybrid system is presented which lead to reduce computation time. Simulation results show the effectiveness of proposed multi-objective algorithm to solve optimal sizing problem in contrast with traditional single objective methods