سال انتشار: ۱۳۹۱

محل انتشار: کنفرانس بین المللی مدل سازی غیر خطی و بهینه سازی

تعداد صفحات: ۵

نویسنده(ها):

Narges Tahmasbi – Department of Mathematics, School of Mathematical Sciences, Shahrood University of Technology
Alireza Nazemi – Department of Mathematics, School of Mathematical Sciences, Shahrood University of Technology,

چکیده:

This paper presents a neural network model to solve chance constrained optimization(CCO) problems.The main idea is to convert the chance constrained probleminto an equivalent convex second order cone programming(CSOCP) problem.A neural network model is then constructed for solving the obtained CSOCP problem.By employing Lyapunov function approach,it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the original problem.The simulation result also show that the proposed neural network is feasible and efficient.