سال انتشار: ۱۳۹۱

محل انتشار: چهاردهمین کنگره ملی مهندسی شیمی ایران

تعداد صفحات: ۶

نویسنده(ها):

محمد سلطانیه – استاد، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف
پریوش مصلحی – مربی، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف
مهدی الله یاری – دانش آموخته کارشناسی ارشد، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی

چکیده:

ذرات معلق تأثیرات مخربی روی سلامتی انسان دارند. تهران تحت تأثیر دلایل زیادی که یکی از آنها موقعیت جغرافیایی اش می باشد از نظر آلودگی هوا شرایط بسیار بدی دارد و ، به همین دلیل توسعه روشهای پیشبینی و سیستمهای هشدار در مورد کیفیت هوا از جملهنیازهای روزافزون شهروندان تهرانی میباشد. هدف از این تحقیق توانایی پیش بینی غلظت ذرات معلق با اندازه ی زیر ۱۰ میکرون PM10) برای تهران است،که به این منظور اطلاعات مربوط به سه پایگاه نمونهبرداری متفاوت که عبارتند از ایستگاههای بازار، فاطمی واقدسیه درنظر گرفته شدهاند. شبکه عصبی بهکار گرفته شده در این تحقیق پرسپترون چندلایهMLP است. سپس جوابهای حاصل از این مدل با مقادیر حاصله از مدل رگرسیون چند متغیره مقایسه میشود و مشاهده شده که ضریب همبستگی در مدل شبکه عصبی به میزان۰/۷۶۱میرسد و برتری قطعی روش پرسپترون چندلایه را به مدلهای رگرسیون چندمتغیره مشخص میشود. نتایج مدل برای دورههای زمانی کوتاهتر یعنی یکساله بهتر از دوساله و سه ساله است و این امر به نوسانهای زیاد دادهها در دوره های طولانی که بر عملکرد شبکه تأثیر سوء میگذارد، برمیگردد. کیفیت دادههای ورودی در جوابهای شبکه نقش مؤثری دارند و نیز اثر دادههایی که ثبت نشدهاند بر جوابهای شبکه منفی میباشد.