سال انتشار: ۱۳۹۱

محل انتشار: چهارمین کنفرانس مهندسی برق و الکترونیک ایران

تعداد صفحات: ۷

نویسنده(ها):

الیاس مزروعی راد – کارشناس ارشد مهندسی پزشکی، دانشگاه آزاد اسلامی واحد مشهد،متخصص پردازش سی
جلیل شیرازی – دکترای مهندسی برق، دانشگاه آزاد اسلامی واحد گناباد
داود غفوریان مدائنی – کارشناس ارشد مهندسی پزشکی، دانشگاه آزاد اسلامی واحد مشهد
هادی اکبری – کارشناس ارشد مهندسی پزشکی، دانشگاه آزاد اسلامی واحد مشهد

چکیده:

ماشین بردار پشتیبان یکی از روش های یادگیری با معلم است که از آن برای دسته بندی داده ها استفاده می کنند. این روش نسبتاً جدیدی است که در سال های اخیر کارایی خوبی نسبت به روش های قدیمی تر دارد و برای ساختارهای کمترین ریسک مورد استفاده قرار می گیرد. مبنای کاری دسته بندی کننده ماشین بردار پشتیبان، دسته بندی خطی داده ها و کمتر کردن کران بالای خطا است. این روش برای دسته بندی باینری بکار می رود و برای بکارگیری آموزشهای نظارتی به منظور یافتن دستورالعمل جداسازی بهینه بین دو کلاس از اطلاعات مورد استفاده قرار می گیرد. ایده استفاده از این ابزار برای استخراج خصوصیات که ارتباط آنها در حوزه شناسایی الگو نسبتاً جدید است. در این مقاله تکنیکی برای استفاده دسته بندی سیگنال مغزی به شکل باینری پیشنهاد شده است. این شیوه برای محک سیگنال مغزی در نظر گرفته شده و روشهایی را برای دستیابی صحتی بالاتر از ۹۵٫۹۶% پیشنهاد می کند که با روشهایی پیشنهادی اخیر که صحت آن در حدود ۹۴٫۵% است قابل مقایسه می باشد.